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Abstract 

A two-scale approach based on eigendeformation-based homogenization is explored to predict 
the behavior of concrete targets subjected to impact loading by high speed projectiles. The 
method allows accounting for micromechanical features of concrete at a computational cost 
comparable to single scale phenomenological models of concrete. The inelastic behavior of 
concrete is modeled using three types of eigenstrains. The eigenstrains in the mortar phase 
include pore compaction (or lock-in), rate-dependent damage and plasticity eigenstrains, whereas 
the inelastic behavior of aggregates is assumed to be governed by plasticity only. Material 
parameters were identified using inverse methods against unconfined compression and uniaxial 
compression tests. A unit cell was constructed from a 3D digital image of concrete. The 
eigendeformation-based homogenization approach was validated for the projectile penetration 
into concrete target. The simulation results were found to be in reasonable agreement with the 
experimental data. Attention is restricted to non-reinforced concrete. 

1. Introduction 

    Portland concrete has been widely used as a construction material for civil and military 
applications since the 18th century, even though its grandfather, Roman concrete made from 
quicklime, pozzolanic and an aggregate of pumice, dates back to Roman Empire. The reasons for 
concrete’s ubiquity in practice are not only it being one of the environmentally friendliest and 
cost-effective materials, but also due to its high compressive strength, which makes it play a 
critical role in defense applications including nuclear reactor containments and fortification 
installations.  
    The problem of predicting the behavior of concrete targets subjected to impact loading by 
high speed projectiles has been of military interest for many years. Various procedures have been 
developed and they generally fall into three categories: (1) empirical or analytical approaches 
[1,2], (2) experimental approaches [3-5] and (3) numerical approaches [6-15].  
    For numerical approaches, such as the finite element method, to be viable, it is essential to 
characterize the constitutive models for concrete. Concrete is typically modeled as a 
homogeneous single-scale [7-11,16,17] or heterogeneous two-phase [6,12-14] material. In an 
attempt to capture the dilatant behavior of concrete the cap plasticity model was employed in 
[7,8]. In [9], a modified Holmquist-Johnson-Cook (HJC) model for concrete with enhanced 
pressure-shear behavior, strain-rate sensitivity and additional damage variables tracking the 
tensile/shear cracking and pore compaction were introduced. A coupled plasticity-damage model 
was considered in [10], whereas an energy release rate based plasticity-damage model was 
suggested in [11]. In [17] a microplane model of concrete was developed to account for pressure 
sensitivity, dilatancy, deviation from normality, Bauschinger effect and hysteresis.  
    Consideration of concrete as a heterogeneous or composite material consisting of mortar 
and aggregates has been somewhat less popular (see [6,12-14] for noteworthy exceptions),  The 
premise of this approach is that each phase can be modeled using different material laws and the 
interaction between the phases can be explicitly accounted for. This is of particular importance 
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since elastic degradation of mortar exhibits a more compounded process than that of the 
aggregate. In the mortar phase, microcrack closure under reversal loading gives rise to stiffening 
of material and microcrack growth is not perfectly brittle but rather involves plastic 
deformations. On the other hand, the aggregate phase can be adequately described within the 
framework of classical plasticity. The interaction between the phases so far have been 
predominantly accounted for by means of various effective medium models, such as 
Mori-Tanaka and self-consistent approaches. Notable exceptions were reported in [18-20] where 
computational homogenization methods were employed to explicitly account for concrete 
microstructure. Also noteworthy are various mesomechanical models where continuum is 
replaced by discrete medium [21, 22].  
    While computational cost of the computational homogenization approaches is a small 
fraction compared to the direct numerical simulation, where a characteristic mesh size is of the 
heterogeneity order, they remain computationally prohibitive for complex microstructures such 
as those of concrete. This is because a nonlinear unit cell problem for a two-scale problem has to 
be solved for a number of times equal to the product of the number of quadrature points at a 
macroscale and the number of load increments and iterations at the macroscale. If this approach 
is to be a viable alternative to modeling concrete, it is necessary to reduce the computational 
complexity of the fine scale (unit cell) problem without significantly compromising on the 
solution accuracy of interest, which is typically at the macro level. In this manuscript we explore 
the application of the eigendeformation based homogenization [23-28] to multiscale modeling of 
the non-reinforced concrete targets subjected to impact loading by high speed projectiles. The 
salient feature of the eigendeformation-based homogenization is that the unit cell problem is 
formulated in terms of eigendeformation modes, which a priori satisfy equilibrium equations in 
the microscale, and thus eliminate the need for costly solution of discretized nonlinear 
equilibrium. 
    The paper is organized as follows. The problem statement is formulated in Section 2. The 
formulation of eigenstrains and the overall solution algorithm are given in Section 3. Validation 
studies are considered in Section 4 starting with the digital image of the concrete microstructure, 
calibration of microphase properties and prediction in a penetration problem. Finally, several 
concluding remarks are drawn in Section 5. The eigendeformation-based homogenization theory 
is outlined in the Appendix.  



2. Problem Statement 

 

Figure 1. Macro- and micro- structure of concrete material 

    Consider a concrete as a heterogeneous material formed by a repetition of locally periodic 
microstructure as shown in Figure 1. The microstructure consisting of mortar and aggregate 
phases is described by a unit cell or so-called representative volume element (RVE).  
    The macroscopic problem considered in the paper is a penetration example [4] by a rigid 
projectile as shown in Figure 2. The projectile geometry is given in Figure 3. The physical 
properties of the concrete used in this paper are listed as Table 1.  
    The governing equations describing the response of the structural system are:  
Momentum balance:  
 ( ) ( ) ( ) ( )iij j ix t b x t x t x tuσ ρ, , + , = , , ,&&  (1) 
where ijσ  is stress,  is body force, ib ρ  is density and  is displacement.  iu
Kinematics relation:  

 1( )
2

ji
ij

j i

uux t
x x

ε
⎛ ⎞
⎜
⎜
⎜
⎜ ⎟
⎝ ⎠

∂∂
, = + ,

∂ ∂

&&
&

⎟
⎟
⎟  (2) 

where ,i iju ε  are displacement and strain components, respectively. The superimposed dot 
denotes material time derivative.  
Constitutive relation:  

 ( ) ( ) ( ) ( )I
ij ijkl kl kl

I

x t L x x t x tσ ε μ⎡, = , − ,⎢⎣ ⎦
∑ ⎤

⎥  (3) 

where  is elastic moduli and ijklL I
ijμ  is the I-th component of the eigenstrain We assume an 

additive decomposition of total strains into elastic strains and eigenstrains consisting of inelastic 
strains (damage, plasticity, etc.), hygrothemal strains, and phase transformation strains. The 
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formulation of the inelastic deformation strains is detailed in Section 3.  
 

 

Figure 2. Definition of the penetration model 

 

 

Figure 3. The geometry of 3.0 CRH projectile [4] 

4 

 



 

Table 1. Physical properties of concrete used in the paper 

Compressive strength 38.7MPa   

Wet density  2.25 Mg/    3m

Volume solids  82.53%   

Volume water  5.63%   

Volume air  11.84%   

Volume voids  17.47%   

 

The mixture portions of the concrete (38.7MPa) are listed as Table 2. 

Table 2. Mixture portions of concrete used in the paper 

Materials  Mass in pounds   

ASTM Type I, Holnam Cement Co.  543   

Natural, siliceous, concrete sand, SSD condition  1478   

ASTM No.89, 3/8 NMS, crushed limestone, SSD condition 1566   

Water reducer, high-range, Eucon 37  961 ml or 32.5 fl oz  

Water reducer, normal-range, Eucon WR-91  961 ml or 32.5 fl oz  

Water  315   
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3. Microscale Inelastic Properties of Concrete: Eigenstrain 

    The theoretical framework of the eigendeformation-based approach is outlined in Appendix 
A. In this Section we focus on the formulation of the inelastic deformation eigenstrains I

ijμ  
assuming perfect interfaces, i.e., neglecting the eigenseparations n̂δ . Having been frequently 
referred to as plastic-fracturing materials, concrete exhibits plastic flow in both mortar and 
aggregate phases. We hereby define plastic strain pε  as one source of the eigenstrains in both 
phases. Another source of eigenstrains denoted as dε is formed by crack nucleation and 
microcracks growth, which typically takes place in the mortar phase [13]. Finally, the closure of 
microcracks and/or original air voids under compressive load gives rise to the compaction of 
concrete material. This causes a sudden stiffening of the mortar phase [9,13] known as lock-in. 
This phenomenon in the mortar phase will be modeled by so-called lock-in eigenstrain denoted 
as cε . The next two subsections will focus on the formulation of the eigenstrains in the two 
phases. The algorithm details will be given in Section 3.3. 

3.1. Eigenstrains in the aggregate phase 

    The inelastic behavior of aggregates is modeled using classical isotropic/kinematic 
plasticity theory. Thus plastic strain is assumed to be the only eigenstrain source 
 ( .) ( )agg p aggμ ε .= .  (4) 
The inelastic parameters for the aggregate phase are: hardening modulus ( .)agg

H , yield stress as 
, and mixture parameter  defining the relative weight of the isotropic and kinematic 

hardening  for pure isotropic hardenin ( .) 0aggθ

( .)agg
Yσ

( .)aggθ
( g and ( .) 1aggθ = =  for pure kinematic 

hardening). Two additional internal variables denoted [ ]a b,  are defined with  a  being the 
equivalent plastic strain, and b  tracking the center of von Mises yield surface in the stress 
deviator space. Given local strain in the aggregate ( .)agg

ijε , one can find lo stic strain 
( .)p agg

ijε  by radial return or similar 

cal 

orithm [29].  

)

)

)

pla

alg

3.2. Eigenstrains in the mortar phase 

    We assume that the three sources of eigenstrains ,  introduced 
in Section 3 may not evolve simultaneously. The damage eigenstrain ε  is assumed to be 
initiated and accumulated under tensile loading at the microscale, while ε and 

evolve under compressive loading. The tensile and compression loadings are determined 
by probing the macroscopic volumetric strain 

( )p mortarε ( )d mortarε , 
d m

(c mortarε
)rtar( o

(p mortar

(c mortarε
3

1 II ε=
Ξ =∑ , where Iε  is a macroscopic 

principal strain. The evolution of the inelastic deformation eigenstrain for mortar is then 
expressed as 
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( ) ( ) ( )

( ) ( )

0,
0.

mortar p mortar c mortar

mortar d mortar

if
if

μ ε ε
μ ε

Ξ ≤⎧ = +
⎨ Ξ >=⎩

& & &

& &
 (5) 

 
For plastic strain , we employ the same linear isotropic/kinematic hardening law as for 
the aggregate phase. The formulation of the other two eigenstrain components in the mortar 
phase is discussed next. 

(p mortarε )

3.2.1. The damage eigenstrain   ( )d mortarε

    We consider a rate-dependent damage model to alleviate (at least partially) mesh size 
dependency caused by strain softening. For simplicity, we omit the superscript (mortar). The 
damage parameter ω  is defined to be a function of equivalent strain ε̂ , i.e. ˆ( )ω ε= Φ . The 
damage eigenstrain is defined as dε ωε= . With the internal variable , which records the 
largest equivalent strain in loading history, we define the closure of damage function as  

r

 { }ˆ ˆ ˆ( ) ( ) 0C r R R g rε ε ε= , ∈ × | , ≤  (6) 
where ˆ ˆ( )g r rε ε, := − . The damage evolution is defined as  

 

ˆ1 (ˆ( )
ˆ

1 ˆ( )

g r

r g r

)εω ε
ϑ ε

ε
ϑ

∂Φ
= ,

∂

= ,

&

&

 (7) 

where ⋅  is the Macaulay bracket and (
2

)x xx + | |
= . The rate effect is controlled by ϑ . If 

0ϑ → , the model becomes rate-independent, whereas if ϑ →∞ , the model coincides with the 
instantaneous elastic response. Various functions of damage parameter ˆ( )ω ε= Φ  have been 
proposed. Here, we adopt the simplest variant defined in Figure 4.  
    In Figure 4,  is the critical stress at the end of elastic process,  is the area under the 
stress/strain curve or the strain energy density. The damage parameter 

S G
ω  is defined as  

 

ˆ0
ˆ( )ˆ ˆ( )

ˆ

i

max i
i f

f i

max f

k
k k kk k

k

ε
ω εω ε ε

ω ε

⎧
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪⎩

<
−= Φ = ≤ ≤

−

≥

                 (8) 

 
224 3

2
a

i f
a a

S GE SSk k
E E

− + −
= = ,                  (9) 

where  is elastic modulus in the loading direction.  aE
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Figure 4. Relation between cumulative damage function Φ  and stress/strain curve 

3.2.2. The lock-in eigenstrain   ( )c mortarε

    The lock-in eigenstrain cε is assumed to be a function ( )cε ε= Ψ %  of the characteristic 
compressive strain defined as  

 
3

1
I

I
ε ε

=

= −∑% ,  (10) 

where ⋅  is the Macaulay bracket and Iε  is local principal strain. The function Ψ  is 

characterized by three material parameters ip , fp  and c
maxε  as (see also Figure 5)  

 

0
( )( )

i
cc max i

i
f i

c
max f

f

p
p p pp p

p

ε
ε εε ε ε

ε ε

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

<
−= Ψ = ≤ ≤−

≥

%

%% %

%

 (11) 
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Figure 5. Relation between Ψ  and characteristic strain ε%  

3.3. Numerical implementation  

    Recalling the internal variables a , , and , and defining the internal variable  to 
record the largest characteristic compressive strain 

b r s
ε%  in the loading history, the algorithm in 

Box 1 describes an iterative scheme for updating multiple eigenstrains. The algorithm takes 
advantage of the reduced order equation (A10) given in the Appendix. Boxes 1.1-1.3 give the 
corresponding subroutines for updating different eigenstrains. 

9 
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Box 1. Main Algorithm: Updating multiple eigenstrains in concrete (the reduced order unit cell problem) 
Given microscopic variables (subscripts denoting the time step):  

Microscopic strain ,  ( )mortar
nε

( .agg
nε

)

)Plastic eigenstrain , , and plastic internal variables  ( )p mortar
nε

( .p agg
nε

Damage eigenstrain ( )d mortar
nε , and damage internal variables  

Lock-in eigenstrain ( )c mortar
nε , and lock-in internal variable  

and macroscopic strain nε , at time nt , strain increment 1nε +Δ  between nt  and 1nt + . 

Find the above micro- and macroscopic variables at time 1nt + .  

1. Let 1 1n n nε ε ε+ += + Δ , . 1n nt t t+Δ = −
2. Calculate the macroscale principal strain 

1nIε +
.  

3. Calculate the macroscale volumetric strain 
1

3
1 1 nn II ε ++ =

Ξ =∑ . 

4. Using ( .),ar agg
nε  as initial values, apply Newton Method to solve for ( .)

1, agg
nε +  from 

the equations (see equation (A9) in the Appendix) 

( )mort
nε

( )
1

mortar
nε +

( 1) ( 1) ( 1) ( 1) ( 1)nkl( 1)

( 1)( 1)

( ) ( ., ) ( ) ( ) ( ) ( ., .) ( .) ( )

( .) ( ., .) (

n n n nn

nn

mortar mortar mortar p mortar d mortar c mortar mortar agg p agg mortar
ijkl ijkl ijklij kl kl kl kl

agg agg agg p agg
ijklij kl

P P A

P

ε ε ε ε ε ε

ε ε

+ + + + ++

++

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

− + + − =

−
( 1) ( 1) ( 1) ( 1)

.) ( ., ) ( ) ( ) ( ) ( .)
n n n n

agg mortar p mortar d mortar c mortar agg
ijkl ijklkl kl kl klP Aε ε ε ε+ + + +

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

− + + =

) )

)

)

 

 
For each iteration of the Newton Method:  
(a) update the eigenstrains  and  using the subroutine in Box 1.1. (

1
p mortar

nε +
( .

1
p agg

nε +

(b) update the eigenstrain  using the subroutine in Box 1.2. (
1

d mortar
nε +

(c) update the eigenstrain  using the subroutine in Box 1.3. (
1

c mortar
nε +

5. Let . 1( ) ( )n n+⋅ = ⋅
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Box 1.1. Subroutine for updating plastic eigenstrain 1
p

nε +  

Given eigenstrain p
nε , plastic internal variables , , microscopic strain na nb 1nε + , and macroscopic 

volumetric strain .  1n+Ξ

Find 1
p

nε + , 1na + , 1nb + .  

If 1 0n+Ξ > , then (tensile loading): 

1
p p

n nε ε+ = , 1n na a+ = , 1n nb b+ = . 
Else (compressive loading): 

(a) find the deviator 1 1 1])nr I+ .  1 ( [
3n ne tε ε+ += −

(b) compute the trial stress )p
n nb1 12 (trial

n ne eζ μ+ += − − .  

(c) check the yield condition 1 1 2 3( )n
trial

n n Yf Haθ+ . if 1 0nf + > , go to next 
step;         

ζ σ+ +:=|| || − /

else 1 0nγ + = , go to step (f).  Δ

(d) calculate the consistency parameter 1
1 2

32
n

n
f

H
γ

μ
+

+Δ =
+

.  

(e) calculate the unit vector normal to von Mises yield surface 1
1

1

trial
n

n trial
n

n ζ
ζ

+
+

+

=
|| ||

p

.  

(f) update the plastic strain 1 1
p p

n n nε ε ε+ += + Δ , where 1 1
p

n n nε γ 1n+ + +Δ = Δ .  
2
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Box 1.2. Subroutine for updating damage eigenstrain 1
d
nε +   

Given eigenstrain d
nε , damage internal variables nω , nr , microscopic strain 1nε + , time interval tΔ and 

macroscopic volumetric strain 1n+Ξ . 

Find 1
d
nε + , 1nω + , 1nr + .  

If , then (tensile loading): 1 0n+Ξ >
(a) find the local principal strain 

( 1)nIε +
 by 

( 1)nijε +
.  

(b) compute the equivalent strain 
( 1)

3 2
1 1

[[ ]]ˆ
nn II

εε
++ =

= ∑ , where 
0

[[ ]]
0

x x
x

cx x
≥⎧

= ⎨ <⎩
,  

is material parameter  indicating  damage contribution from compression.  

c

(c) if 1ˆn nrε + ≤  then 1n nr r+ = , 1n nω ω+ =   
else  

  
1

1

ˆ

1

nn

n

tr
r t

εϑ

ϑ

+

+

Δ
+

=
Δ

+
 , 1

1 1
1

( )ˆ( )
ˆ

n
n n n n

n

r r εω ω
ε

+
+ +

+

∂Φ
= + −

∂
  

end if  
(d) calculate the damage eigenstrain 1 1

d
n n

 

1nε ω ε+ + += . 
Else (compressive loading): 

d

Box 1.3. Subroutine for updating eigenstrain 1
c
nε +   

Given eigenstrain c
nε , lock-in internal variables , microscopic strain ns 1nε + , and macroscopic volumetric 

strain . 1n+Ξ

Find 1
c
nε + , 1ns + . 

If 1 0n+Ξ > , then (tensile loading): 

1n ns s+ = , 1
c c
n nε ε+ = . 

Else (compressive loading): 
(a) find the local principal strain 

( 1)nIε +
 by 

( 1)nijε +
.  

(b) compute the characteristic strain 
( 1)

3
1 1 nn II

εε
++ =

= −∑% .   

(c) if 1n nsε + ≤%  then  

1n ns s+ = , 1
c c
n nε ε+ =   

else  

11 nns ε ++ = % , 11 ( )c
nnε ε ++ = Ψ %   



4. Numerical Example: Penetration on Concrete Target 

4.1. Unit cell of concrete 

 

Figure 6. Construction of the unit cell model from digital image of concrete sample 

    We start with a construction of the unit cell model of concrete. The concrete type is given in 
Section 2. We assume that crushed limestone constitute the aggregate phase whereas the 
remaining material composes the mortar phase. The volume fraction of aggregate is 42% and the 
largest aggregate size is approximately 10mm. The geometry of the unit cell is reconstructed 
from scanned images in various cross-sections of the concrete sample. The finite element mesh is 
then generated from the grey-level digital images [30]. Figure 6 shows the unit cell model used 
in the present study. A thin mortar phase is formed to encompass the unit cell so that periodic 
boundary conditions could be imposed on the mortar phase only as shown in Figure 7.  
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Figure 7. Finite element mesh of unit cell model for concrete 

4.2. Prediction of projectile penetration 

    The numerical model was implemented in ABAQUS [31]. The constitutive law of concrete 
was coded using Fortran subroutines in UMAT/VUMAT of ABAQUS. Material parameters were 
calibrated using laboratory tests [8]. We adopted the test data set of concrete from [32] for the 
purpose of comparison. The length and diameter of the specimens were on average 111.37mm 
and 50.4mm, respectively. We used unconfined compression and uniaxial compression tests to 
calibrate material parameters for each phase. The responses for the two tests are shown in Figure 
8 and Figure 9. The calibrated microscopic material parameters are listed as in Table 3.  
 
Table 3. Calibrated microscopic material parameters of concrete   

Phase  E (MPa)  ν  Yσ  (MPa) H  (MPa) θ    

Mortar  40000.0  0.2  11.0  2000  1    

Aggregate  60000.0  0.2  75.0  4000  1    

Phase  S (MPa)  G ( 3MJ m/ ) c  ip   fp   c
maxε   ϑ    

Mortar  1.0  51 25 10−. ×   0.0  0.0025  0.145 0.052  0.05  
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Figure 8. The response comparison in unconfined compression 
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Figure 9. The response comparison of uniaxial compression 



    With material parameters for each phase defined, we constructed the finite element model 
for concrete target and projectile. The finite element size in the penetrating region was 10mm. 
The projectile was fired at five different velocities, which are , 238 1m s. / 275 7m s. / , 

, , and . Two types of properties were investigated, penetration 
depth and projectile deceleration [32]. The depth comparison between the test data and 
simulation are listed in Table 4. Figures 10-14 show the deceleration comparison for different 
striking velocities 

314m s/ 369 5m s. / 456 4m s. /

sV .  
 
Table 4. Penetration depth comparison for 1.83m diameter concrete targets 

Striking Velocity Penetration Depth  Simulated Depth   

(m/s)  (m)  (m)   

238.1  0.30  0.284   

275.7  0.38  0.365   

314.0  0.45  0.457   

369.5  0.53  0.60   

456.4  0.94  0.89   
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Figure 10. Projectile deceleration comparison under 238 1sV m s= . /  

 

Figure 11. Projectile deceleration comparison under 275 7sV m s= . /  
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Figure 12. Projectile deceleration comparison under 314sV m s= /  

 

Figure 13. Projectile deceleration comparison under 369 5sV m s= . /  
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Figure 14. Projectile deceleration comparison under 456 4sV m s= . /  

    The depth and deceleration prediction agreed reasonably well with the test data. In this 
study, we also investigated the damage parameter in the mortar phase of the concrete target at 
various projectile velocities as shown in Figure 15. It can be seen that the damage level increases 
with increase in striking velocity. The damage contours depicted in Figure 15 provide the 
qualitative shape of the crater during the penetration.  
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Figure 15. Equivalent damage strain in the mortar phase of concrete target penetrated by projectiles at 

various striking velocities 

5. Conclusions and future research directions 

    A multiscale approach for predicting penetration of projectiles into concrete targets has 
been explored as an alternative to conventional methods based on either empirical-analytical 
approaches, experimental techniques or numerical approaches employing phenomenological or 
rules-of-mixture constitutive models of concrete. The multiscale approach presented in this paper 
is based on eigendeformation-based homogenization which approximates the solution fields in 
the unit cell in terms of the residual-free functions and consequently avoids costly equilibrium 
calculations. The inelastic behavior of concrete is modeled using pore compaction (or lock-in) 
and rate-dependent damage eigenstrains in the mortar phase as well as plastic eigenstrains in 
both the aggregates and mortar. The method has been validated on a rigid projectile penetration 
problem for which experimental data exists.  

20 

 

    Future studies will focus on the following three issues: (i) consideration of steel 



reinforcement, (ii) accounting for uncertainty in the concrete microstructure, (iii) development of 
the mechanistic approach to pore compaction which so far has been accounted for 
phenomenologically. To account for steel reinforcement we will employ a three-scale reduced 
homogenization approach [23,24,26] where the concrete microstructure will be considered at the 
microscale and a rebar embedded in a homogenized concrete will comprise the mesoscale. To 
account for the uncertainty in the concrete microstructure we will employ a combination of the 
reduced-order and stochastic homogenization methods. To account for pore compaction, 
development of large deformation eigendeformation based homogenization will be pursued. 
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Appendix A. Brief Theory of Reduced-Order Homogenization 

A.1. Mathematical homogenization 

    In the mathematical homogenization theory, various fields are assumed to be a function of 
the macroscopic coordinates, x , and as the microscopic coordinate system, y x ζ= / , where 
ζ is a small positive parameter. Combining the governing equations (1-3) with the asymptotic 
expansions  

  (A1) 

0 1

0 1

0 1

0 1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

i i i

ij ij ij

ij ij ij

I I I
ij ij ij

u x y t u x t u x y t
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, , = , , + , , +

L

L

L

L

yields the unit cell problem  

 1 0( ) ( ) ( ) ( ) 0
l

j

I
ijkl k y klkl

I y

L y x t u x y t x y tμε ,

,

⎧ ⎫⎡ , + , , − , , =⎨ ⎢⎣ ⎦⎩ ⎭
∑ ⎤

⎬⎥  (A2) 

from which the macroscale stress can be computed 

 1 01( ) ( ) ( ) ( ) ( )
l

I
ijkl k y klij j kl

I

x t L y x t u x y t x y tμσ ε ,, Θ

⎛, = , + , , − , ,⎜Θ ⎝ ⎠
∑∫ dy⎞

⎟  (A3) 
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where  is the unit cell domain, while Θ ijσ  and ijε  are macroscale stress and strain, 
respectively.  

A.2. Reduced order multiscale system 

    Following [23], the microscale displacement field 1(iu x y t), ,  is constructed so that the 
stress field in the unit cell would automatically satisfy equilibrium equations. This is 
accomplished by introducing eigenstrain 0I

ijμ  and eigenseparations n̂δ   
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ˆ ˆ
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The resulting microscale displacement gradients are given by 

 

1 0

ˆ ˆ
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I stra I
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∫

ŷ
 (A5) 

where , , and  are influence functions for macroscale strain, eigenstrain, and 
eigendisplacement, respectively, which can be computed by solving a sequence of elastic 
boundary value problems prior to nonlinear macro analysis. A reduced order model is obtained 
by discretizing eigenstrain and eigenseparation fields as  

ijklG I stra
ijklg ˆ

disp
ijng

 

0 ( )

1
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 (A6) 

where  and  are the numbers of partitions of phases and interfaces respectively, In m ( )I
ij
αμ  

and ( )
n̂
ξδ  are the average eigenstrain and eigendisplacement in the phase partition α  and 

interface partition ξ , respectively.  is a piecewise constant shape function defined as ( ) ( )N yα

 
( )

( )
( )

1 ,
( )

0 .
y

N y
y

α
α

α

⎧ ∈Θ
= ⎨

∈Θ⎩
 (A7) 

( ) ( )N ξ y%  is a linear combination of piecewise linear finite element shape functions defined over 
partition ξ . 
    Combining the unit cell equations (A2) with the decomposition (A5) with the above 
discretization yields the reduced system of equations: 
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Reduced-Order Microscale Unit Cell Problem:  
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 (A9) 

Reduced-Order Macroscale Stress Updating:  

 
( ) ( )( ) ( )

ˆ ˆ
1 1 1

( ) ( ) ( ) (
InN mII

ijkl ijkl ijnij kl nkl
I

)x t x t x tL E F
α ξα ξ

α ξ
μσ ε δ

= = =

, = , + , + ,∑∑ ∑ x t  (A10) 

where ˆ ˆ( )n nt G δ=  represents the traction along interface. All coefficient tensors in the 
reduced-order system, such as , , , , , I

ijklP ˆijnQ ijklA ˆ
I

nijC ˆ ˆnmD n̂ijB , ijklL , I
ijklE , and ˆijnF , are 

determined prior to the nonlinear analysis in the preprocessing stage. The detailed formulation 
can be found in [23,24].  
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